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Prologue

Using B Formal Method in Industry
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Train Applications 1

- Fully automatic train systems:

- Paris metro line 14 (October 1998)

- Roissy airport shuttle (March 2007)

- More train applications
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Paris Metro Line 14 (Source: Siemens) 2

Line length 8.5 km

Number of Stops 8

Time interval between two trains 115 s

Speed 40 km/h

Number of trains 17

Passengers per day 350,000
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Roissy Airport Shuttle (Source: Siemens) 3

Line length 3.3 km

Number of Stops 5

Time interval between two trains 105 s

Speed 26 km/h

Number of trains 14

Passengers per hour 2,000
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Comparing the Case Studies (1) 4

Paris Roissy

Number of final ADA lines (from B) 86,000 158,000

Number of proofs 27,800 43,610

Percentage of interactive proofs 8.1 3.3

Interactive proofs in Man.Month 7.1 4.6
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Comparing the Case Studies (2) 5

- Man.month calculated with:

- 15 interactive proofs per man.day

- 21 days in a month

- In both cases, no unit tests and no integration tests

- Reinforcing global tests (catastrophic scenarios)

-Important differences in the software requirements:

- Paris: specially done for the project

- Paris: adaptation from O’Hare Airport (problems)
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Similar Applications by Siemens (1) 6

City Line Service Driverless

Algiers 1 2011 No

Barcelona 9 2007 Yes

Budapest 4 2013 Yes

Caracas 4 2004 No

Helsinki 1 2013 No

Hong Kong TKO 2001 No
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Similar Applications by Siemens (2) 7

City Line Service Driverless

Mexico B 2000 No

New York Canarsie 2006 No

PATH 2014 No

Paris 14 1998 Yes

3 2009 No

1 2011 Yes

5 2012 No
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Similar Applications by Siemens (3) 8

City Line Service Driverless

Rennes B 2018 Yes

Roissy CDG 1 2007 Yes

2 2007 Yes

San Juan 2 2004 No

Sao Paulo TKO 2001 Yes

Contact: <Jean-Marc.Meynadier@siemens.com>
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Similar Applications by Alstom (1) 9

System City Service Size Language Driverless

KVB French Trains 1993 30000 ADA No

CDTC Cairo 1996 3000 Modula2 No

SACEM Paris (RER B) 1996 2500 Modula2 No

ACSES AMTRACK (USA) 2002 14500 ADA No
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Similar Applications by Alstom (2) 10

System City Service Size Language Driverless

Urbalis 200 Shanghai 2003 30000 ADA No

New Dehli

Seoul

Daegu

Incheoun

Madrid

Santiago

Cairo 2013

Bangalore

Calcutta
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Similar Applications by Alstom (3) 11

System City Service Size Language Driverless

Urbalis 400 Shanghai 2008 100000 ADA No

Beijing Yes

Chenzen No

Sao Paulo 2013 Yes

Mexico No

Milano No

Toronto No

Wuhan No

Contact: <Luis-Fernando.Mejia@transport.alstom.com>
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Frequently Asked Questions about Event-B 18

- Event-B is said to handle discrete transition systems: is it enough?
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Hybrid Systems 19
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Hybrid Systems 24

- The idea is then to introduce (somehow) continuous transitions

- BUT, when introducing such continuous transitions

the discrete transitions are still needed

- Hence the notion of hybrid systems

where both discrete and continuous transitions can occur
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Typical Hybrid Systems 30

- Hybrid frameworks are frequent in embedded systems where:

- A piece of software, the controller, manages an environment

- Controller is linked to environment by sensors and actuators

- Controller works from time to time in a DISCRETE fashion

- While environment evolves in a CONTINUOUS way.
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Illustration 32

- We want to develop models of such closed systems
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Illustration 33

- We want to develop models of such closed systems

- We have thus to cope with both discrete and continuous evolutions
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Example 34
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Example 35

- Continuous physical environment:

a train defined by its position, speed, and acceleration
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Example 36

- Continuous physical environment:

a train defined by its position, speed, and acceleration
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Example (cont’d) 37

- Discrete controller:

a driver changing from time to time the acceleration of the train
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Example (cont’d) 38

- Discrete controller:

a driver changing from time to time the acceleration of the train
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Example (cont’d) 39

- Discrete controller:

a driver changing from time to time the acceleration of the train

- Goal: to control the speed of the train (station or another train)
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Our Approach was influenced by that of Action System 40

R.J. Back and R. Kurki-Suonio.

Distributed Cooperation with Action Systems

ACM Transaction on Programming Languages and Systems. 1988.

R.J. Back, L. Petre, and I. Porres.

Generalizing Action Systems to Hybrid Systems.

FTRTFT 2000. LNCS 1926 Springer Verlag, 2000.

R.J. Back, C. Cerschi Seceleanu, and J. Westerholm.

Symbolic Simulation of Hybrid Systems.

APSEC’02, 2002.
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The Approach with Event-B (inspired by Action System) 47

- Discrete variables together with continuous variables

- Continuous variables are time functions as in Action System

- We are interested in the immediate future of continuous variables

- Discrete systems as an abstraction of continuous ones

- We thus use refinement from a discrete to a continuous system
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- The 2 examples:
- Aircraft collision avoidance
- Train control (time permitting),
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Two Examples 52

- The 2 examples:
- Aircraft collision avoidance
- Train control (time permitting),

- Description:
- The problem,
- The constraints and goal,
- The solution,
- The discrete and continuous transitions

- Examples developed and fully proved with the Rodin Platform

- These examples show complete analytical solutions

53



Example 1
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Aircraft Collision Avoidance: Constraint and goal 60

- The distance between aircrafts is as follows:

d = 2ρ sin
φ

2

- Their distance must always be greater than or equal to a constant p

- Goal: we want to find a solution to avoid the collision
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The Solution 61

- The radius r of this circle will be determined later

- Both aircrafts continue to fly at the same speed during the maneuver
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Consequence of the Solution 62
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- Angle φ between aircrafts does not change during the maneuver
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Consequence of the Solution 68

- Angle φ between aircrafts does not change during the maneuver

- Both aircrafts are still at the same distance rho of the point o

- The only parameter that counts then in order to maintain the

distance d ≥ p:

d = 2ρ sin
φ

2
≥ p

- is the common distance ρ of both aircrafts to the collision point o

- The smallest distance is when they are on the circle (more later)

- We must have then: p

2 sin φ2
≤ r
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Making the Maneuver more Precise 74

- Both aircrafts fly as indicated on this figure

- They start the maneuver when at a distance r
√
3 from the point o

- The airrafts decide to maneuver while at a distance ρi from o

- We must have then: ρi ≥ r
√
3 that is r ≤ ρi√

3
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Making the Maneuver more Precise 75

- Both aircrafts fly as indicated on this figure

- They start the maneuver when at a distance r
√
3 from the point o

- The airrafts decide to maneuver while at a distance ρi from o

- We must have then: ρi ≥ r
√
3 that is r ≤ ρi√

3

- We have then:
p

2 sin φ
2

≤ r ≤
ρi√
3
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Making the Maneuver more Precise 76

- Here is again the possible interval for the radius r of the circle:

p

2 sin φ2

≤ r ≤
ρi√
3

- We must have then the following for the constants ρi, φ, and p:

2ρi sin
φ

2
≥ p
√
3
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Event-B Development: Constants φ, ρi, and p 77

- φ is the angle of the two trajectories

- ρi is the initial distance of the two aircrafts to the collision point o

- p is the minimal safety distance between the two aircrafts

axm1: φ ∈ 0 .. π

axm2: ρi ∈ R+

axm2: p ∈ R+

axm4: 2ρi sin
φ
2 ≥ p

√
3

- In this initial model, we are still discrete
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Event-B Development: Variables and Invariants 78

- phase corresponds to the various discrete events

- ρ is the common distance of the aircrafts to the collision point o

- r is the circle radius

inv1: phase ∈ {0, 1, 2, 3, 4, 5}

inv2: ρ ∈ R+

inv3: r ∈ R+

inv4: 2ρ sin φ2 ≥ p

- inv4 is the safety invariant: the minimal authorized distance is p
80



The Various Discrete Events 79

- INIT: initialisation

- agree: choose the radius of the circle

- start: start the maneuver

- enter: entering the circle

- cycle: move on the circle

- leave: leaving the circle

81



INIT
begin
ρ := ρi
phase := 0
r :∈ R+

end

82



agree
any c where
phase = 0
p ≤ 2c sin φ

2
c
√
3 ≤ ρi

then
phase := 1
r := c

end

Choosing the radius r of the circle

83



start
when
phase = 1

then
phase := 2
ρ := r

√
3

end

ρ goes from ρi to r
√
3
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enter
when
phase = 2

then
phase := 3
ρ := r

end

ρ goes from r
√
3 to r
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cycle
when
phase = 3

then
phase := 4
ρ := r

end

ρ goes from r to r

86



leave
when
phase = 4

then
phase := 5
ρ := r

√
3

end

ρ goes from r to r
√
3
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Refinement: the State 80

- We introduce the intermediate continuous parts

- We replace ρ by ρ c (that is ρ continuous)

- We introduce now, the present time

inv1 1: ρ c ∈ R+ 7→ R
inv1 2: now ∈ dom(ρ c)
inv1 3: ρ = ρ c(now)

inv1 4: ∀ t · t ∈ dom(ρ c) ⇒ 2ρ c(t) sin φ2 ≥ p

- inv1 3 is the gluing invariant

- inv1 4 generalises the previous invariant: 2ρ sin φ2 ≥ p
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Refinement: Initialisation 81

(abstract-)INIT
begin
ρ := ρi
phase := 0
r :∈ R+

end

(concrete-)INIT
begin
ρ c := {0 7→ ρi}
phase := 0
r :∈ R+

now := 0
end

agree
any c where
phase = 0
p ≤ 2c sin φ

2

c
√
3 ≤ ρi

then
phase := 1
r := c

end
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(abstract-)start
when
phase = 1

then
phase := 2
ρ := r

√
3

end

(concrete-)start
when
phase = 1

then
phase := 2

ρ c := λ t · t ∈ now .. now+ (ρi−r
√
3)

v
| ρi − v(t− now)

now := now+ (ρi−r
√
3)

v
end
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More on the start event 82

start
when
phase = 1

then
phase := 2

ρ c := λ t · t ∈ now .. now +
(ρi−r

√
3)

v | ρi − v(t− now)

now := now +
(ρi−r

√
3)

v
end

- ρ c(now) = ρi

- ρ c(now +
(ρi−r

√
3)

v ) = r
√
3

- ρ c decreases linearly from ρi to r
√
3

- (ρi−r
√
3)

v is the time it takes to fly from ρi to r
√
3
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Computing ρ During First Part of Maneuver 83

ρ2 = a2 + b2

= r2(1− cosα)2 + r2(
√
3− sinα)2

= r2(5− 4 cos(π3 − α))

ρ = r
√
5− 4 cos(π3 − α)

- ρ decreases from r
√
3 to r when α goes from 0 to π3 .
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Computing ρ During First Part of Maneuver 84

- The angle α increases from 0 to π3 during this phase

- The distance is πr3

- The time to cover this distance is thus πr3v

- We have: α =
v(t−now)

r
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(abstract-)enter
when
phase = 2

then
phase := 3
ρ := r

end

(concrete-)enter
when
phase = 2

then
phase := 3

ρ c := λ t · t ∈ now .. now+ πr
3v
| r
√

5− 4cos(π
3
− v(t−now)

r
)

now := now+ πr
3v

end
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More on the enter event 85

enter
when
phase = 2

then
phase := 3

ρ c := λ t · t ∈ now .. now + πr
3v
| r

√
5− 4 cos(π

3
− v(t−now)

r
)

now := now + πr
3v

end

- ρ c(now) = r
√

5− 4 cos π
3

= r
√

5− 4
2

= r
√
3

- ρ c(now + πr
3v
) = r

√
5− 4 cos(π

3
− vπr

r3v
) = r

√
5− 4 cos 0 = r

- ρ c decreases non-linearly from r
√
3 to r

95



Derivation of ρ c(t) 86

ρ c(t) = r

√
5− 4 cos(

π

3
−
v(t− now)

r
)

Thus

dρ c(t)

dt
=

4r sin(π3 −
v(t−now)

r )

2

√
5− 4 cos(π3 −

v(t−now)
r )

−v
r

When t increases from now to now + πr
3v , then the derivative

dρ c(t)
dt increases monotonically from−v to 0:

dρ c(t)
dt t=now

= −v

dρ c(t)
dt t=now+πr

3v
= 0
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(abstract-)cycle
when
phase = 3

then
phase := 4
ρ := r

end

(concrete-)cycle
when
phase = 3

then
phase := 4
ρ c := λ t · t ∈ now .. now+ 2πr

3v
| r

now := now+ 2πr
3v

end
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More on the event cycle 87

cycle
when
phase = 3

then
phase := 4

ρ c := λ t · t ∈ now .. now + 2πr
3v | r

now := now + 2πr
3v

end

- ρ c(now) = r

- ρ c(now + 2πr
3v ) = r

- ρ c remains constant to r
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(abstract-)leave
when
phase = 4

then
phase := 5
ρ := r

√
3

end

(concrete-)leave
when
phase = 4

then
phase := 5

ρ c := λ t · t ∈ now .. now+ πr
3v
| r
√

5− 4cos(v(t−now)
r

)
now := now+ πr

3v
end
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More on the event leave 88

leave
when
phase = 4

then
phase := 5

ρ c := λ t · t ∈ now .. now + πr
3v
| r

√
5− 4 cos(v(t−now)

r
)

now := now + πr
3v

end

- ρ c(now) = r
√
5− 4 cos 0 = r

- ρ c(now + πr
3v
) = r

√
5− 4 cos π

3
= r

√
5− 4

2
= r
√
3

- ρ c increases non-linearly from r to r
√
3
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Derivation of ρ c(t) 89

ρ c(t) = r

√
5− 4 cos(

v(t− now)

r
)

Thus

dρ c(t)

dt
=

4r sin(
v(t−now)

r )

2

√
5− 4 cos(

v(t−now)
r )

v

r

When t increases from now to now + πr
3v , then the derivative

dρ c(t)
dt increases monotonically from 0 to v:

dρ c(t)
dt t=now

= 0

dρ c(t)
dt t=now+πr

3v
= v
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Mathlab/Simulink Output 1: Variation of ρ with Time 90

a = ρi−r
√
3

v , b = a+ πr
3v , c = b+ 2πr

3v , d = c+ πr
3v
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Mathlab/Simulink Output 2: Aircraft Trajectories 91

103



Example 2
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Train Control (adapted from A. Platzer’s book) 96

- Two trains are sent some information by Radio BroadCasting

- The second train is in position z

- It is made aware of a position m where it should at the latest stop
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- The controller in the second train reacts every other ε seconds

- It can change the acceleration of the train according to 3 values:

Accelerations are: A,−b, or 0, where A and b are positive
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- The train should never go backwards
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Train Control: Constraints and Goal 102

- The controller in the second train reacts every other ε seconds

- It can change the acceleration of the train according to 3 values:

Accelerations are: A,−b, or 0, where A and b are positive

- The speed should never be greater than sl (speed limit)

- The train should never go backwards

- Goal: Calculate the best acceleration at each controller’s reaction.
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- In order to stop before m, the brake (deceleration b) should

"absorb" the kinetic energy of the train (Mv2
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Train Control: Formal Reasoning 109

- The second train is at position z and the "goal" is at position m

- The train has a mass M and a speed v

- In order to stop before m, the brake (deceleration b) should

"absorb" the kinetic energy of the train (Mv2

2 ):

Mb(m− z) ≥ Mv2

2

that is

2b(m− z) ≥ v2

- This is the main invariant to be maintained
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Train Control: Formal Reasoning (cont’d) 110
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Train Control: Formal Reasoning (cont’d) 111

- At each control time (every other ε seconds), the invariant

to be maintained is:

2b(m− z) ≥ v2
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Train Control: Formal Reasoning (cont’d) 112

- At each control time (every other ε seconds), the invariant

to be maintained is:

2b(m− z) ≥ v2

- If the speed is v and acceleration is a at position z,
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Train Control: Formal Reasoning (cont’d) 113

- At each control time (every other ε seconds), the invariant

to be maintained is:

2b(m− z) ≥ v2

- If the speed is v and acceleration is a at position z,

- after ε seconds, the speed will be v + aε
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Train Control: Formal Reasoning (cont’d) 114

- At each control time (every other ε seconds), the invariant

to be maintained is:

2b(m− z) ≥ v2

- If the speed is v and acceleration is a at position z,

- after ε seconds, the speed will be v + aε

- and the position will be z + vε+ aε
2

2 .
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- At each control time (every other ε seconds), the invariant

to be maintained is:

2b(m− z) ≥ v2

- If the speed is v and acceleration is a at position z,

- after ε seconds, the speed will be v + aε

- and the position will be z + vε+ aε
2

2 . We must then have:

2b(m− z − vε− aε
2

2 ) ≥ (v + aε)2
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- At each control time (every other ε seconds), the invariant

to be maintained is:

2b(m− z) ≥ v2

- If the speed is v and acceleration is a at position z,

- after ε seconds, the speed will be v + aε

- and the position will be z + vε+ aε
2

2 . We must then have:

2b(m− z − vε− aε
2

2 ) ≥ (v + aε)2

that is

2b(m− z) ≥ v2 + (aε2 + 2vε)(a+ b)
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- We must have the following after ε seconds:

2b(m− z) ≥ v2 + (aε2 + 2vε)(a+ b)
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- We must have the following after ε seconds:

2b(m− z) ≥ v2 + (aε2 + 2vε)(a+ b)

- The choice of the new acceleration can be A if

2b(m− z) ≥ v2 + (aε2 + 2vε)(A+ b)
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- We must have the following after ε seconds:

2b(m− z) ≥ v2 + (aε2 + 2vε)(a+ b)

- The choice of the new acceleration can be A if

2b(m− z) ≥ v2 + (aε2 + 2vε)(A+ b)

- Otherwise, the acceleration should be -b (braking), resulting in:

2b(m− z) ≥ v2
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- After the choice of acceleration, A or -b, the speed of the train is:

v + aε
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- After the choice of acceleration, A or -b, the speed of the train is:

v + aε

- If v + aε > sl, we must choose a 0 acceleration (instead of A)
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Train Control: Formal Reasoning (cont’d) 124

- After the choice of acceleration, A or -b, the speed of the train is:

v + aε

- If v + aε > sl, we must choose a 0 acceleration (instead of A)

- We have the additional invariant: v ∈ 0 .. sl
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Train Control: Formal Reasoning (cont’d) 125

- After the choice of acceleration, A or -b, the speed of the train is:

v + aε

- If v + aε > sl, we must choose a 0 acceleration (instead of A)

- We have the additional invariant: v ∈ 0 .. sl

- We have thus three different controller decisions:

- decision 1: acceleration -b

- decision 2: acceleration A

- decision 3: acceleration 0
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- If the speed and position are v and z, then after ε seconds:
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- If the speed and position are v and z, then after ε seconds:

- the new speed of the train will be:

- drive 1: if v + aε ≥ 0 then v + aε

- drive 2: if v + aε < 0 then 0
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- If the speed and position are v and z, then after ε seconds:

- the new speed of the train will be:

- drive 1: if v + aε ≥ 0 then v + aε

- drive 2: if v + aε < 0 then 0

- the new position of the train will be:

- drive 1: if v + aε ≥ 0 then z + vε+ aε
2

2

- drive 2: if v+aε < 0 then z+ v2

2b (the train stops after time vb)
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- We presented an approach to develop hybrid systems in Event-B
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- We presented an approach to develop hybrid systems in Event-B

- This approach did not require adding new features to Event-B
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- We presented an approach to develop hybrid systems in Event-B

- This approach did not require adding new features to Event-B

- The only thing that will be necessary in Event-B are Real Numbers
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- We presented an approach to develop hybrid systems in Event-B

- This approach did not require adding new features to Event-B

- The only thing that will be necessary in Event-B are Real Numbers

- This will be done through the very important Theory plug-in

(Issam Maamria, Michael Butler)
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- We presented an approach to develop hybrid systems in Event-B

- This approach did not require adding new features to Event-B

- The only thing that will be necessary in Event-B are Real Numbers

- This will be done through the very important Theory plug-in

(Issam Maamria, Michael Butler)

- Continuous variables are not defined by differential equations
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Thank you for listening
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