
FORMAL VALIDATION METHOD
AND TOOLS FOR COMPUTERIZED
INTERLOCKING SYSTEM

Dr Marc ANTONI, SNCF,
Technological Innovation Department, France

FM 2012 Industry day

2

Safety problems of IT-Systems

Railway characteristics

Interpretable deterministic Petri nets

Formal validation method

Application

Conclusion

Summary

3

Safety problems of IT-Systems

Railway characteristics

Interpretable deterministic Petri nets

Formal validation method

Application

Conclusion

Summary

4

The railway system uses more and more data processing or
computerized systems:

The classical IT-Systems have some advantages:

� News functions, increasingly complex

� Orders at distances

� Exploitation staff reduction…

They have also disadvantages – They are:

� are longer to develop and to modify

� are less available and have à shorter life time

� require a qualified maintenance staff

� are more difficult to validate and to integrate in a global system

Problematic of IT-Systems systems

5

The recent experience show us unfortunately that the current development

methods don’t give a “real guarantee” that the products will be absolutely safe

(SIL4 or not), that they can be integrated safely in a global railway system.

� A recent study showed that more then ¾ accidents in relation with

computerized systems are due to specifications errors

� The accidents are due to incorrect functional descriptions, to

modification or maintenance operation

� The examples are numerous, also in the railway applications

(cf. ETCS and ERTMS applications…)

� A fact is sure, the current standards are not sufficient…

There are SIL4 and SIL4 systems…

Problematic of IT-Systems systems

6

We need a new way to guarantee the safety of critical
computerized systems:

� With the traditional systems:
- it was necessary to identify the dreaded events and to reduce
their probability

� With computerized systems:
- the list of the dreaded events is not countable
- it is necessary to define the framework of the authorized system
states and to be able to check the framework is never left

- an formal proof is only possible if the domain of the reachable
system states is finished and countable.

- the formal proof of an application designed with an algorithmic
software is „difficult “, or generally impossible to realise

Problematic of IT-Systems systems

7

An N by P architecture does not reduce this kind of risk (failure)
If there exists a combination of entries which can lead the system to
a unsure state, this one will exist on all the computerized units at
the same time

Inputs combination

leading to a unsure

system state

Specification error (in

the system context)

N output in the

same unsure

position at the

same time

Problematic of IT-Systems systems

8

A countable reachable system states is necessary to the realisation
of a formal proof: If not, the system is in practice not testable…

Start
When a envisaged combination

occurs, the system runs over the

greens and oranges system states,

usually well tested

When a non envisaged combination

occurs, the system can reach the

reds system states, not tested and

potentially dangerous

A formal method has to prove that it doesn’t exist any not envisaged
combination who can activate a unsure function

Problematic of IT-Systems systems

9

Safety problems of IT-Systems

Railway characteristics

Interpretable deterministic Petri nets

Formal validation method

Application

Conclusion

Summary

10

� In general:
– The railway systems generally use Boolean values, use automatisms
– The safety is carried out with incompatibilities (exclusion in space and

time of a common position of resources)

� Interlocking functions has to:
– Take into account all the national laws, exploitation rules…
– Take into account the environment of the system (without exportation of

safety constraint…)
– Be in service 24:00 over 24:00, 365 days par year, many years long…
– Are numerous on the network
– Be checked at 100% after each functional modification or maintenance

intervention

Railway characteristics

11

� The SNCF designed PIPC interlocking system were designed:
– To carry out a clear separation between « hardware & basic software »

(suppliers view) and « functional software » (infrastructure manager view)

– To carry out clear interfaces between the computerized module and rest
of the railway system

– To carry out the specification and the functional software with
interpretable deterministic Petri nets (interpreted in the target machine)

– To reduce the safety demonstration costs and to allow a formal validation
of the functional software in the real environment conditions of the
interlocking system
⇒ the method have to be applicable by signalling engineers

Railway characteristics

Paramétrage de configuration Logiciel applicatif

Logiciel de base

P aramètres

applicatifs

P aramètres

s ys tème

D escription des

graphes

S équenceur

G es tion des

res s ources

Moteur de

rés olution

des graphes

G es tion des

entrées

terrain

G es tion des

s orties

terrain

T emporis ations

G es tion des

communications

(AEFD)
Interface I2

Interface I1

� The architecture use common functional interfaces for all the interlocking

systems (for all the suppliers)

Interface I0 : SAAT
procedure

AEFD
language

NS1 relays

Infrastructure
manager
responsibility

Suppliers
responsibility

N1
SIL4

Interpretable
deterministic

Petri nets

Railway characteristics

13

Safety problems of IT-Systems

Railway characteristics

Interpretable deterministic Petri nets

Formal validation method

Application

Conclusion

Summary

14

� The classical Petri nets aren’t generally not interpretable in a
deterministic way:
– It doesn’t exist a distinction between „intern“ and „extern“ events
– It exist possible indecisions in the real time Petri nets interpretation

(priorities…)

Graph 1
Graph 2

Graph …
Graph N

Graph N
Graph …

Graph 2
Graph 1

„Intern“
„Intern“

„Extern“ „Extern“

Two different interpretations
Two reachable system states trees

Interpretable deterministic Petri Nets

15

� With classical Petri nets:
– The interpretation depends of the graph interpretation order
– The nets are generally not interpretable in real time

2

1

Event which starts transition:

TC_2005_free

Action realised then the

transition is drawn:

Signal_Open

TC_2002_free

TC_2003_free

Classical PN

Interpretable deterministic Petri Nets

16

2

1

Event which starts transition :

TC_2005_free

Condition : TC_2002_free AND TC_2003_free

AEFD

Language

� AEFD language allows a deterministic functional specification and a deterministic
interpretation of signalling functions (competing automats with constraints):

– The interpretation is realisable without indecision

– The interpretation is not dependant of the graphs reading order

– The interpretation is realizable in real time

Action realised then the

transition is drawn:

Signal Open

Interpretable deterministic Petri Nets

17

…
Graph name
1
2
TC_2005_Libre Event
TC_2002_Libre AND TC_2003_Libre AND
TC 2005_Libre Condition
Signal_Open; Action
…

Selected

notation in the

textual

interpretable

file form

� AEFD definite language allows a deterministic functional specification and a
deterministic interpretation of signalling functions:

– The interpretation is realisable without indecision

– The interpretation is not dependant of the graphs reading order

– The interpretation is realizable in real time

Interpretable deterministic Petri Nets

Graph A Test place
K

Graph B

a b

� Communication between graphs with classical Petri nets:

1 1

2 4

3

2

[A1, A2, A3, A4, B1, B2, K]

[1, 0, 0, 0, 1, 0, 0]

[A1, A2, A3, A4, B1, B2, K]

[0, 1, 0, 0, 1, 0, 0]
[A1, A2, A3, A4, B1, B2, K]

[1, 0, 0, 0, 0, 1, 1]

Event a Event b

[i, j, IND(K)]

[1, 1, 0]

[i, j, IND(K)]

[1, 2, 1]

Event a

[A(i), B(j), K]

[i, j, IND(K)]

[2, 1, 0]

Event b

Global state vector

Classical representation Simplified written mode

18

Interpretable deterministic Petri Nets

Graph A

Indicateur
K

Graph B

� Communication between graphs with the selected notation:

1 1

2 4

3

2

a
[
K_non_Actif]
/

b
[K_non_Actif]
K_Actif/

[i, j, IND(K)]

[1, 1, 0]

[i, j, IND(K)]

[1, 2, 1]

Event a

[A(i), B(j), K]

[i, j, IND(K)]

[2, 1, 0]

Event b

Vecteur d‘état global

Ecriture simplifiée

19

An indicator is

ordered by only one

graph, it can be read

by all the graphs

Interpretable deterministic Petri Nets

20

� With the selected written mode, the Petri nets are interpretable in
a deterministic way, without ambiguity and in real time

Graphe 1
Graphe 2

Graphe …
Graphe N

Graphe N
Graphe …

Graphe 2
Graphe 1

„Interne“
„Interne“

„Externe“ „Externe“

An unique reachable, finished and countable system states

Fichier.txt Fichier.txt

Interpretable deterministic Petri Nets

21

Safety problems of IT-Systems

Railway characteristics

Interpretable deterministic Petri nets

Formal validation method

Application

Conclusion

Summary

22

� It exists two families of formal methods:
�Formal design method:

The proof is brought by code construction, the code is
transcribed and compiled to be installed in the target machine
(mainly a suppliers vision)

�Formal validation method:
The proof is brought on the final interpreted final functional
model (mainly an infrastructure manager vision)
The suggested method is a formal validation method
The method is applicable on the functionalities written with
deterministic and interpretable Petri nets

Formal validation method

23

� The functions written with deterministic and interpretable PN can
be represented by an unique reachable system states:

Formal validation method

Initial sure
state

Systematically system states research

Post* (Initial_state)

� Each state system can be associated with one with the 4 categories:
– System states sure and available
– System states sure but not available
– States system systematically reachable sure system

states (not available)
– Unsure system states

The system doesn’t

not do what is

awaited

The system does

what is awaited

Sure system states

(system not
available)

Unsure
system
states

Breakdown

material

Systematic software

error

System states

systematically sure
and non available

Sure states

Formal validation method

25

� The safety properties must be written in order to be able to
prove that no “sure but not available system state”
(overabundant) or „unsure system state is reachable

System states

accessible and

sure

Sure system states

(system not
available)

Unsure
system
states

Breakdown

material

Systematic software

error

System states

systematically sure
and non available

Sure states

Formal validation method

26

� The safety properties have to be written with « proof automats »,
by signalling engineers, in three stages:

Stage 1: description of the safety properties
or incompatibilities they have to be ever
respected by the railway system

Stage 2: description of the waited
functionalities for the detection of
« possible » overabundant conditions

Stage 3: functional postulates description
(rules, environment…) limiting the validity
field of the proof

Simple

text file

Formal validation method

27

� The proof can be accomplished in the following way with
the use of the « functional graphs » and « proof graphs »:

�The proof principle is the following:

«If a group of properties is true for a given system state, and that this group remains

proved during a transition between system states, then the property is true in the new

system state»

This proof can be reproduced for every level of system states to the point of being

applied by recurrence to all reachable system states. The initial state have to be safe.

Post* (Etat Initial) ∩∩∩∩ Unsafe States = φφφφ ?

Formal validation method

� The basic principle is:

28

Initial safe state All the possible
transitions are
known

All the reachable
transitions are
proved

All the reachable
system states a
safe

⇒⇒⇒⇒AND AND

Reached state

Proved
Transitions

State which doesn’t
respect a postulate

Formal validation method

29

• Use of the AEFD language as a unit specification language :
1st use : proved specifications + exhaustive check plan generation

Functionalities
(signalling language)

Safety Properties
& Postulates (AEFD)

Formal validation of the
specification written
with the AEFD language

Transcription of the
functionalities

Design of the software
(functions & system)

Verification of the
system by the supplier

Exhaustive check plan

Infrastructure
manager

Suppliers in
charge of the
development

Formal validation method

30

• Use of the AEFD language as a unit specification language :
2nd use : proved specifications + interpretation by a safe target unit

Functionalities
(AEFD)

Safety Properties
& Postulates (AEFD)

Formal validation of the
specification written
with the AEFD language

Infrastructure
manager

Suppliers in
charge of the
development

Specification de
l’interpréteur et de la
structure d’accueil

Code exécutable
(fonctions système)

Validation de
l’interpréteur et de la
structure d’accueil

.exe

Exhaustive check of
the functionalities of
the automatism / Go for
putting into service

Formal validation method

31

Safety problems of IT-Systems

Railway characteristics

Interpretable deterministic Petri nets

Formal validation method

Application

Conclusion

Summary

Appropriated tools were developed by SNCF Infra to accomplish:

─ Automatic definition of the safety properties and the postulates describing the

conditions of use,

─ Formal writing of these properties in order make the proof,

─ Definition of the initial system state in which all the safety property are true,

─ Evaluation of the safety properties by recurrence for each transition between

system states. The safety properties are evaluated until all safety properties are

true, otherwise the proof is stopped.

⇒Their application is possible by persons without special mathematical

education but only a good signalling knowledge

⇒Their application leads to a significant reduction of the validation costs

and delays .32

Application - Formal validation tools chain

33

� Formal validation process - Step 1

Data base of

graphical object (all

possible on in France)

Capture of the track plan

Data base of generic

proof graphsInstantiation

Description of the track
plan data file

Interlocking
simulator

Data file of description
of all the proof graphs
for this track plan Listing of all the

variable -
Comparison

Signalling Study process

Proofer (horizontal and vertical explorations)

Data file of description
of all the functional
graphs for track plan

Application - Formal validation tools chain

34

� Formal validation process - Step 2

Generation of the tree of

reachable system states

Event tree of reachable

system states

Analyse of the tree of

reachable proven system

states

Execution reporti–

OK if all the properties

haven been proved

Contre examples list if

the proof isn’t OK

Automatic check of the
conditions of the initial
check plan

Proofer (horizontal and vertical)

Trace of all the details for

an forward analyse

Trace (.txt)

Application - Formal validation tools chain

35

26

Association d’objets de
signalisation avec

paramétrage minimal
a

Saisie des paramètres : instanciation des objets

Nombre de réponses

demandent une

réflexion préalable de

l’essayeur (élaboration
du cahier d’essais)

Elément ou listes

d’éléments permettant

d’instancier les

Automates de preuve

Capture of the track plan by topological

association of graphical object

Graphical Objects topological laid out and

instantiate: automatically or manually by the

signalling engineer in charge of the proof:

- Signal object,

- Switch object…

26

Association d’objets de
signalisation avec

paramétrage minimal
a

Saisie des paramètres : instanciation des objets

Nombre de réponses

demandent une

réflexion préalable de

l’essayeur (élaboration

du cahier d’essais)

Elément ou listes

d’éléments permettant

d’instancier les

Automates de preuve

� Track plan example and safety properties instantiation

Application - Formal validation tools chain

36

� Proof tool view

Control screen
of the Proof
tool

System state change selected
(blue)

System State Vector before
the selected transition

System state Vector after the
selected transition

Details of the transition

Screen button

-Curent Graph State

- Logical state of
signalling variable
(inputs, indicators,
output, events of
graphs activation…)

Application - Formal validation tools chain

37

(1) To carry out the vivacity

check

(2) To carry out the

execution report

(3) To presenter the results

with ergonomic manner

(4) To carry out the tree of

the transitions tree

Proved transitions tree and reachable states:
- Yellow: un respected Postulate

- White: Transition true and proved

- Grey: Transition un authorized

- Red: Transition leading to the un respect of one or

more safety property

-Green: Transition leading to an overabundant

� Reachable states tree tool view

Application - Formal validation tools chain

38

Safety problems of IT-Systems

Railway characteristics

Interpretable deterministic Petri nets

Formal validation method

Application

Conclusion

Summary

39

� The development of critical computerized systems should not
take place any more without application of a formal method
allowing to guarantee the functional software:

– In particular for the system “to complicated to be tested”…

�The practical application of formal methods requires to create from

the design the necessary conditions for its realization:

– The safety properties can't be written by suppliers or mathematicians,

but only by Signalling men : the only persons who know the postulates of the

system, the environment conditions…

– It is necessary to differentiate clearly the functional software (signalling)

and the basic software (computer science)

Conclusion

40

� The method is applied with functional software defined with
deterministic and interpretable Petri nets. It key points are:
– Model based specifications, provable and interpretable in real time, can be

used for critical IT-Systems (300 in use today)
– No risk of error introduction during the code generation and compilation

– Less expensive than tests accomplished traditionally

– The infrastructure manager controls the functionalities… with his own
people

– Can be used in an industrial way, without people educated in mathematics,
– Automatic and exhaustive check of the interlocking system
– Is now applied on a real interlocking systems

�The real difficulty is the generic identification and the
formalization of safety properties and postulates

Conclusion

41

The method allows to realize
industrially a formal validation
of the IT system functionalities
in its context of use:

�allows an automatic and exhaustive
check-up of an interlocking system,

�gives as result an achieved guaranty.

The mathematic properties of a “state machine” can be used when
the interlocking system design with the necessary constraints.

Critical computerized system Over système

Exploitation

rules

sensors

Actionneurs

IT system

Opérator Maintenance

Conclusion

42

The approach can be a bridge between two worlds : railway vs.
university

- to conceal the mathematical aspects,
- to have a interface specific to the domain.

The method allows to reduce the costs and increases t he safety of
critical IT system. It will be used by the SNCF Infra and the UIC

The application of formal methods is now an obligati on for the
development of new critical IT system if we want really:

- a safe railway world for tomorrow,
- to save people and money,
- to react before a next railway informatics Titanic,
- to maintain the safety level has an important advantage

of the railway system in a competitive market.

Conclusion

Thank you for your attention
Any question?

Dr Marc ANTONI
SNCF – Infrastructure Direction
marc.antoni@sncf.fr

� Formal proven since 1896

Because you will never have the
possibility to come back and try

again…

Dr Marc ANTONI
SNCF – Infrastructure Direction
marc.antoni@sncf.fr

