(. DESTECS

Embedding Formal Techniques into
Industrial Product Development
Experiences with the DESTECS approach

Marcel Verhoef
Chess eT International B.V.

Marcel .Verhoef@chess.nl

Joint work with John Fitzgerald, Peter Gorm Larsen, Bert Bos,
Jan Broenink, Yoni de Witte, Peter van Eijk, Christian Kleijn
and (many) others

UNIVERSITY OF TWENTE. CI1eSS

A Newcastle

7] n
) amReus %‘L University verracrT iX NEOPOSL™ NEDERLAND

2 N/ UNIVERSITET

Overview of this talk

Challenges in developing dependable embedded systems

Collaborative modeling: the DESTECS approach

Example industrial applications

Live tool demo

tom DESTECLCS

Conclusions

|

Embedded Systems Development (1)

* Highly competitive marketplace:

e Requirements are volatile
e Time to market is key

 Products are complex

« Early design stages are vulnerable to failure:
e Engineering disciplines have distinct methods & tools
» Design choices are often implicit or experience based
e System dynamics are complex to grasp and express
» Dependability (faults, fault tolerance) is often crucial

‘> DESTECS

Embedded Systems Development (2)

« Problem decomposition into
disciplines

« Traditional approaches are
“one discipline at a time”

Mechanical Electronic / Electrical Pneumatic

« Concurrent engineering required
to improve time to market

... but important properties are
multidisciplinary

Hyvdraulic Chemical
... and so weaknesses are exposed
late (integration)

« So: how to cross the boundaries
between disciplines?

Acoustical Software

‘(> DESTECS

Embedded Systems Development (3)

» Design gaps between disciplines
lead to errors in designs

« Many of these errors are
detected too late: during testing
of first physical prototype

« Example: paper path setup

» Paper jams for high speed paper
handling

(. DESTECS

Embedded Systems Development (4)

2 DESTECS 6

Industial “holy grail” : Design Space Exploration

A
Explore and restrict to feasible solutions

Managing space of models (patterns)

Abstraction level
Lever of detail

“Ranking”

I
I
I
I
I
N
; Visualisation of test outcomes
I
I
I
: Managing scenarios

e o o - o o o e o o -

design space Fin
gn sp product

Solutions

tom DESTECLCS

|

DESTECS (www.destecs.org)

» Bridge design gap between disciplines through co-simulation
* Develop methods and tools
* Modeling of faults and fault tolerance mechanisms

Faults ii
/
/
Iscenario
A
I\
R |

(PR Require-
N ments
N\
\
\
v

VDM Bond graphs
Controller oy System .
(OV e I’t ur e) discrete-time \\ continuous-time (ZO'S Im)

\\
T\
» Restriction to discrete-event domain and continuous-time domain

* Industrial Follow Group will monitor results and provide challenges
 EU FP7 project runs from 01-2010 until 12-2012

S DESTEGS

¢

DESTECS in a nutshell (1)

A = 20450 ooy et Attt Tt - DUSTECS T i
- . Fe Edt Vew [rsert Model Drawing Setngs Tods Hep e B0-Q- 5 P e B B ey, . %5 Debug [ver 48y DESTECS

odel Based Design: S EEe foeee i se o rissn | R R
_ _ = pulic testRealbaza: (1 =e> () 2l LR N 8 W

Moce! | ey o |[Bw AAMMAR LS &~ S o sudary =l AL (| = | BT

- controller in discrete ~
event domain

 plant in continuous
time domain

Co-simulation:
 coupling disciplines

« analysis on virtual
prototype

Automated Co-model Analysis

Methodological guidelines

fop DESTEDGS

:]H

DESTECS in a nutshell (2)

Cause of the problems

« Geometry changes were not
adequately communicated

 Errors in acceleration and
deceleration paths

Results

» These errors can be detected in an
early stage of the design through

—— co-Simulation

« Dependability can be assessed by

fault injection

Marcel Verhoef, Peter Visser, Jozef Hooman, Jan Broenink. Co-simulation of Real-time

Embedded Control Systems, LNCS 4591, Integrated Formal Methods IFM 2007, pp.
639-658, 2007

Zoe Andrews, John Fitzgerald, Marcel Verhoef. Resilience Modelling Through Discrete

Event and Continuous Time Co-Simulation, Dependable Systems and Networks (July
2007).

v

‘(> DESTECS 10

Modelling & Simulation

Model

~

Abstract

Competent if detailed enough for analysis
Variables

Design Parameters fixed per run

N (
.

/

Model Interface }

Faults - errors - failures
Fault Modelling: including Runs a simulation
Script

error states & faulty Initialises variables and
functionality in the model design parameters

Fault Injection duringa Forces selections and
simulation managed by script external updates, e.g. set
point

.y DESTECS

co-modelling & co-simulation

Shared
* design parameters
Co-model « variables

/ « events

[Model [Contract] Model }
\\4 \
K[Co-model Interface }/

tom DESTECLCS

DESTECS Tool Architecture

Discrete-event Co-Simulation |A—N
engine NV

Overture DESTECS Tool 20-sim

Formally specified semantics of the DE / CT integration (SOS)

‘e DESTELCS

Co-Simulation architecture

co-simulation

scenarios
¢ fault injection ¢
eSS EEEEEESE T e e e e e &1
—— FowSource
P design

parameters

i 1

I
I
| NS Y
: variables .
l I
4 : : valve control v
I e T — > Valve
! A
Cortrol | o | 0=close
; timing I
I ! i
! { L
l I
| |
| |

Ermraret discrete-event | <——
timing timing
commands commands

Example: water tank

dVv
E = QPin — Pout

o = {%-Vif valve open
out 0 if valve closed

v DESTEDS

Example:

FlowSource

L
I
tank
X Valve

Drain

high

low -«

valve control

1 =open
0 = close

¢,y DESTECS

water tank

class Controller

instance variables
private 1 Interface

operations

async public Open: () ==> ()

Open () == duration (50)
1.5etValve (true) ;

async public Close: () ==> ()
Close () == cycles (1000)
1.SetValve (false) ;

sync
mutex (Open,
mutex (Open) ;

Close) ;
mutex (Close)

end Controller

Example: water tank

class Controller

FlowSource

-- Shared design parameters ables

sdp real maxlevel; Tnterface

sdp real minlevel;

-- Monitored variables (seen from the DE controller)
high < monitored real level := 0.0; Open: () ==> ()

_ ration (50)

Jow - -- Controlled variables (seen from the DE controller) (true) ;

controlled bool valve := false; ’

-- events Close: () ==> ()
valve d event high; ycles (1000)

-1 event low; (false) ;

= opern T

-- link events to operations

event high = System.Controller.Open; Close) ;

event low = System.Controller.Close; mutex (Close)

end Controller

tom DESTECLCS

|

Example: water tank

This is VDM-RT: real-
time extensions

Interface manages the
shared variable for the
valve setting.

duration constrain
(absolute) time taken by
the asynchronous ops.

cycles constrain (relative)
time taken by the ops,
depending on deployment

Single active thread
accessing the valve

‘(> DESTECS

1

—

L—7 =

—s]

class Controller

instance variables
private 1 : Interface

operations
async public Open: () ==> ()
Open () == duration (50)
i.SetValve (true) ;

async public Close: () ==> ()
Close () == cycles (1000)
1.SetValve (false) ;

sync
mutex (Open, Close);

mutex (Open); mutex (Close)

end Controller

Example:

class ValveActuator

types

ValveCommand = <OPEN> | <CLOSE>;
instance wvariables

private i Interface;

operations

‘e DESTELCS

modelling faults

public Command: ValveCommand ==> ()
Command (c¢) == duration (50)

cases cC:
<OPEN> -> 1i.SetValve (true),
<CLOSE> —-> i.SetValve (false)
end

post i.ReadValve () <=> c = <OPEN> and
not i.ReadValve () <=> ¢ = <CLOSE>

end ValveActuator

Example: modelling faults

A stuck valve ...

class ValveActuator

types

ValveCommand = <OPEN> | <CLOSE>;
instance wvariables

private i Interface;

private stuck bool := false

operations

private SetStuckState: bool ==> ()
SetStuckState (b) == stuck := Db

post stuck <=> b and not stuck <=> not b;

‘e DESTELCS

public Command: ValveCommand ==> ()

Command (c¢) == duration (50)
if not stuck then
cases cC:

<OPEN> -> 1i.SetValve (true),
<CLOSE> —-> i.SetValve (false)
end
pre not stuck
post i.ReadValve () <=> c = <OPEN> and
not i.ReadValve () <=> ¢ = <CLOSE>
errs STUCK : stuck ->
i.ReadValve () = ~i.ReadValve() ;

end ValveActuator

Example: modelling faults

FlowSource
LI
high |
tank
low -

valve control

A Valve

leak| K

A leak in which liquid flows from the
tank at a constant rate.

Modelling DE-side entails DE
accessing flow rate. So this may be
more appropriately modelled CT-side.
CT-side also allows for more
sophisticated fault models, e.g. leak
flow rate depends on pressure.

activate leak

|

U Drain

(. DESTECS

Example: water tank

‘e DESTELCS

DESTECS case studies

Stick Z

Linear actuator

House +
undercarriage

Bucket load

v DESTEDS

Chess — Self Balancing Scooter (1)

2 DESTECS 24

Chess — Self Balancing Scooter (2)

« ChessWay is atechnology and methodology demonstrator
e First generation: single controller driving both wheels
e Second generation: two controllers, one driving a wheel each
e Third generation: wireless communication sensors < controllers

« ChessWay exhibits typically modelling challenges
common to many Chess products under development
¢ Simple nominal behavior, relatively easy to engineer

e System behavior becomes very complex when faults and
fault tolerance comes into play

e Managing this complexity is the key to improve productivity
(pre-empt cost for complex system integration and validation)

« Typical design questions we want to address a-priori:
e Can we demonstrate the robustness of the ChessWay design?
e Can we assess the impact of changes on the current design?

Lo DESTECS

Chess — Self Balancing Scooter (3)

D-SW

S-SW

side view front view

v DESTEDS

Chess — Self Balancing Scooter (4)

Left Right
h 4 A 4
N N
Hall Hall
H-Bridge sensors Sensors H-Bridge
(IGBT) (IGBT)
) v v A
FPGA S FPGA
(softcafe CPU) | (softcoreCPU)

Accelerometer :[wireless]\: Dirgction switch
communication —|_Safety switch

Gyroscope.

tom DESTECLCS

No Wi
ires? Have You Lost Your Mind?

Engadget - Windows]

W Favorites ireless bike brake system has the highest GP.+« %~ 8- gy - Page” Safety ~ Tools ~ @- 2

Wireless bike brake system hasthe highest GPAever o

By Amar Toor™ posted Oct y7th 2011 6:30AM

] =

s

break gf 6
< reliabili
(reSpOn.e\e‘_ th:"‘r Illty

0 msec)

N
wthis device?

Colorusa yellow shade of mendacious, butifwe designed something that works 9999999999999
percent of the time, we'd probably round off and give ourselves abigol 100 percent A+ we'd probabl_\'
throwina smiley faced sticker, 100 Computer scientist Holger Hermanns, however, is2 much more
honest man, whichis why he's willing to admit that This new wireless bike brake system is susceptible to
outright failure on about three out of every trillion occasions. Hermanns' concept bike, pictured above,
may look pretty standard at first glance, buttake 2 closer lookat the right handlebar. There, youll finda
rubber grip with a pressure sensor nestled inside. Whenever a rider squeezes this grip, that Dlue plastic
box sitting nextto it will send out 2 signaltoa receiver, attached to the bike's fork. From there, the
message will be sent on to an actuator that converts the signal into mechanical energy, and activates the
brake. Best of all, this entire process happens will take just 250 milliseconds of your 1ife. No wires, B0
. Hermanns and his colleagues at Saarland University are now working o ‘f“
»

brakes, n0

=

& mternet Fa - | R100% = 7

/

Modeling the SBS (1)

user

behavior controller interface plant

m o | Controller

discrete event contract continuous time

(. DESTECS

Modeling the SBS — continuous time (2)

RB2

tom DESTECLCS

Modeling the SBS — continuous time (3)

vHalliy Code welocity_x_in *MSf
- Hicton ek o Srngine i
wHall2) et o il |
R —1 & GY ———0 —1MSf omega_in
\‘.H a | |3 I Zerodimciond st Enea
T MSf«
.L ZeroinctonT RVANFIE
c
TF N \/1 R
1
Sf———=0 111 0 11 10
o J]- L Zerouncion? et Zar M"““N
J| Se
0o

:a'c\.;.'Ta‘.a onedimctont! Jerodnciont2

A =5 \1 RWNFIZ
AT AN
[R [R

Angle_out

Filerd

0000313 2z + 0.000313

" & .
z - 0.9994 _x 4 /D
J— #D2 velocity_x_out
AwerageAcceleration + 1/K L~ % |-L ';Ke: L~ itk
angletoraccelerome s’ ADT Fier2
20-sin 4.1 Viewer [2) GLP 2003

tom DESTECLCS

Modeling the SBS — discrete time (4)

FPGAL1
VDM Generated model::Gyroscope VDM Generated model::Accelerometer
+ getYawRateData() : un.limi!edNaIural + Accelerometer(Controller) : Accelerometer
+ Gyroscope(Controller) : Gyroscope + getAccelerationData() : NotSupportedType|
+mGyroscope 1.1 +mAccelerometer 1.1

VDM Generated model::LeftController

CtriLoop()

LeftController() : LeftController
PowerUp()

printDiagnostics()
setRightController(RightController)

+ o+ o+ o+ o+

1.1

VDM Generated model::Controller

mLoopCnt: int =0 {bag}
VDM Generated model:: mName: char [0..¥] {sequence}

ChessWay

Controller(char) : Controller
CtriLoop()

getValue(char) : unlimitedNatural
PowerUp()

printDiagnostics()
setEnvironment(Environment)
setValue(char, unlimitedNatural)

+ debug: bool {bag}

Chessway() : ChesswWay

+ret] 1.1 -mRight|0..1

VDM Generated model::
RightController

+ CtrlLoop()

+ PowerUp()

+ printDiagnostics()

+ RightController() : RightController
+ setLeftController(LeftController)

+mOnOffSwitch 1..1

+mDirectionSwitch 1..1

VoY e (el OO e VDM Generated model::DirectionSwitch

+ getStatus() : bool

+ H
+ OnOffSuitch(Controller) : OnOffSwitch DirectionSwitch(Controller) : DirectionSwitch

+ getStatus() : tDirectionStatus

‘e DESTELCS

Modeling the SBS — discrete time (5)

Environment
+ debug: bool {bag}
- mMaxSimTime: int {bag}
- reserved: char[0..*] {readOnly,bag}
+ Environment(World, int) : Environment
+ evalSensors(unlimitedNatural)
+ evalSingle(unlimitedNatural, char)
MotorActuator + getValue(char) : unlimitedNatural
+ loadScenario(char)
+ initActuator() - mainLoop() MotorSensor
+ isActuated() : bool - printDiagnostics() .
+ MotorActuator(Controller) : MotorActuator + printEnvironment() + getHallSensorData() : NOIISupportedType
+ printDiagnostics() + setValue(char, unlimitedNatural) + MotorSensor(Controller) : MotorSensor
: se:éctu;tedo 0 - __terminate() +mMotorS 11
setFreeRunning -
#mEnvironment .1
+ setPWM(unlimitedNatural) +mMotorActuator onme 0
1.1
-mControiler Controller -mController
-
1.1 [+ mLoopCnt: int =0 {bag} 1.1
+ mName: char[0..*] {sequence}
Accelerometer SafetySwitch
-mController + Controller(char) : Controller -mController
+ Accelerometer(Controller) : Accelerometer 1.1| |+ CtlLoop(1.1 + getStatus() : bool
+ getAccelerationData() : NotSupportedType + getValue(char) : unlimitedNatural + SafetySwitch(Controller) : SafetySwitch
+ PowerUp()
+mAccelerometer | 1..1 + printDiagnostics() +mSafetySwitch | 1..1
+ setEnvironment(Environment)
+ setValue(char, unlimitedNatural)
-mController/ -r1..1ntroller \1..1
RightController
LeftController
. - + CtrlLoop()
+ CtrlLoop() . mLeft mRight + PowerUp()
+ LeftController() : LeftController 0.1 0.1| + printDiagnostics()
+ PowerUp() + RightController() : RightController
* pr|nt.D|agnost|cs() . + setLeftController(LeftController)
+ setRightController(RightController)
+mGyroscope 1..1 +mDire(itionSwitch 1.1
Gyroscope DirectionSwitch
+ getYawRateData() : unlimitedNatural + DirectionSwitch(Controller) : DirectionSwitch
+ Gyroscope(Controller) : Gyroscope + getStatus() : tDirectionStatus

tom DESTECLCS

Analysis of SBS co-models (1)

Self balancing scooter

= Velocity Person+frame x-axis (m/s)‘

0.5

05
-1
100
50 [\
0
) W

-100
0

time {s}

(. DESTECS

Analysis of SBS co-models (2)

CT model running in 20-sim and DE model running in Overture using DESTECS cosim tool
Movie available on http://www.destecs.org and http://www.youtube.com/watch?v=HccXkd4gWys

v DESTEDS 35

http://www.destecs.org/
http://www.youtube.com/watch?v=HccXkd4gWys

Verhaert — Dredging Excavator

House + undercarriage

Linear actuator

« Overload and end-stop protection
 Emergency switch and system reset behavior
« Advanced operator assistance (i.e. perform a straight dig)

‘e DESTELCS

Observations and conclusions

Formal Methods helps to de-risk development

* including de-risking detailed formal analysis

« providing rapid, accurate, but maybe incomplete analyses
 training and methodological guidelines are crucial

» start formal, (higher chance to) remain formal

What does formalism buy us?
 Sound semantic basis for the co-simulation tools & methods

« Comprehensive analytic solutions are a long way off...
... SO (trustworthy) executable specifications are legit!

Co-modelling exposes issues that are often implicit
* In individual disciplines (we knew that already!)

 And across boundaries, e.g. where to model faults

« Expose potential problems earlier (no-brainer)

Co-simulation is enabler for Design Space Exploration
Collaboration (also between researchers and practitioners ©)

(. DESTECS

thank you for your attention!

Any guestions?

CONSOLIDATE EVERY —
THING INTO A
PROGRAM OF LICRK. ..

OUR. RESOURCE
UTILIZATION.

——

@ Scott Adams, Inc./Dist. by UFS, Inc.

SOME MORE OF

.p §
THIS LIEEK T MAFPED g ... TO MAXIMIZE IF ANY OF THAT
‘_ RE‘SSIE.EIP‘EESTEHEG % SYMERGY CAPTURE SOUNDED LIKE
£ AND OPTIMIZE WORK, TLL DO
% IT NEXT LJEEK.

0a? p000 Soott Adama, Inc./Dist. by UFS, Inc

www.dilbart.com

Some pointers to related information resources

http://www.destecs.org http://www.20sim.com
http://www.overturetool.org http://www.vdmportal.org

¢

S DESTEGS

