
Embedding Formal Techniques into

Industrial Product Development

Experiences with the DESTECS approach

Marcel Verhoef

Chess eT International B.V.

Marcel.Verhoef@chess.nl

Joint work with John Fitzgerald, Peter Gorm Larsen, Bert Bos,

Jan Broenink, Yoni de Witte, Peter van Eijk, Christian Kleijn

and (many) others

2

Overview of this talk

• Challenges in developing dependable embedded systems

• Collaborative modeling: the DESTECS approach

• Example industrial applications

• Live tool demo

• Conclusions

3

Embedded Systems Development (1)

• Highly competitive marketplace:

• Requirements are volatile

• Time to market is key

• Products are complex

• Early design stages are vulnerable to failure:

• Engineering disciplines have distinct methods & tools

• Design choices are often implicit or experience based

• System dynamics are complex to grasp and express

• Dependability (faults, fault tolerance) is often crucial

4

• Problem decomposition into
disciplines

• Traditional approaches are
“one discipline at a time”

• Concurrent engineering required
to improve time to market

• … but important properties are
multidisciplinary

• … and so weaknesses are exposed
late (integration)

• So: how to cross the boundaries
between disciplines?

Embedded Systems Development (2)

5

Embedded Systems Development (3)

• Design gaps between disciplines

lead to errors in designs

• Many of these errors are

detected too late: during testing

of first physical prototype

• Example: paper path setup

• Paper jams for high speed paper

handling

6

Embedded Systems Development (4)

7

Industial “holy grail” : Design Space Exploration

Explore and restrict to feasible solutions

Managing space of models (patterns)

Visualisation of test outcomes

“Ranking”

Managing scenarios

8

• Restriction to discrete-event domain and continuous-time domain

• Industrial Follow Group will monitor results and provide challenges

• EU FP7 project runs from 01-2010 until 12-2012

• Bridge design gap between disciplines through co-simulation

• Develop methods and tools

• Modeling of faults and fault tolerance mechanisms

DESTECS (www.destecs.org)

VDM

(Overture)

Bond graphs

(20-sim)

9

 R
e
a
l
T

im
e
 T

o
o
lb

o
x

DESTECS in a nutshell (1)

Model Based Design:

• controller in discrete
event domain

• plant in continuous
time domain

Co-simulation:

• coupling disciplines

• analysis on virtual
prototype

Automated Co-model Analysis

Methodological guidelines

10

DESTECS in a nutshell (2)

Cause of the problems

• Geometry changes were not
adequately communicated

• Errors in acceleration and
deceleration paths

Results

• These errors can be detected in an
early stage of the design through
co-simulation

• Dependability can be assessed by
fault injection

Marcel Verhoef, Peter Visser, Jozef Hooman, Jan Broenink. Co-simulation of Real-time
Embedded Control Systems, LNCS 4591, Integrated Formal Methods IFM 2007, pp.
639-658, 2007

Zoe Andrews, John Fitzgerald, Marcel Verhoef. Resilience Modelling Through Discrete
Event and Continuous Time Co-Simulation, Dependable Systems and Networks (July
2007).

11

Modelling & Simulation

Script

Model Interface

Model

Runs a simulation
Initialises variables and
design parameters
Forces selections and
external updates, e.g. set
point

Abstract
Competent if detailed enough for analysis
Variables
Design Parameters fixed per run

Faults – errors – failures
Fault Modelling: including
error states & faulty
functionality in the model
Fault Injection during a
simulation managed by script

12

co-modelling & co-simulation

Script

Co-model Interface

Co-model

DE

Model
Contract

CT

Model

Shared
• design parameters
• variables
• events

13

DESTECS Tool Architecture

Continuous-time

system

Co-Simulation

engine

Discrete-event

system

Overture DESTECS Tool 20-sim

Formally specified semantics of the DE / CT integration (SOS)

14

Co-Simulation architecture

15

Example: water tank

16

Example: water tank

class Controller

instance variables

 private i : Interface

operations

 async public Open:() ==> ()

 Open() == duration(50)

 i.SetValve(true);

 async public Close:() ==> ()

 Close() == cycles(1000)

 i.SetValve(false);

sync

 mutex(Open, Close);

 mutex(Open); mutex(Close)

end Controller

17

Example: water tank

class Controller

instance variables

 private i : Interface

operations

 async public Open:() ==> ()

 Open() == duration(50)

 i.SetValve(true);

 async public Close:() ==> ()

 Close() == cycles(1000)

 i.SetValve(false);

sync

 mutex(Open, Close);

 mutex(Open); mutex(Close)

end Controller

-- Shared design parameters

sdp real maxlevel;

sdp real minlevel;

-- Monitored variables (seen from the DE controller)

monitored real level := 0.0;

-- Controlled variables (seen from the DE controller)

controlled bool valve := false;

-- events

event high;

event low;

-- link events to operations

event high = System.Controller.Open;

event low = System.Controller.Close;

18

Example: water tank

class Controller

instance variables

 private i : Interface

operations

 async public Open:() ==> ()

 Open() == duration(50)

 i.SetValve(true);

 async public Close:() ==> ()

 Close() == cycles(1000)

 i.SetValve(false);

sync

 mutex(Open, Close);

 mutex(Open); mutex(Close)

end Controller

This is VDM-RT: real-
time extensions

Interface manages the
shared variable for the
valve setting.

duration constrain
(absolute) time taken by
the asynchronous ops.

cycles constrain (relative)
time taken by the ops,
depending on deployment

Single active thread
accessing the valve

19

Example: modelling faults

class ValveActuator

types

ValveCommand = <OPEN> | <CLOSE>;

instance variables

 private i : Interface;

operations

public Command: ValveCommand ==> ()

 Command(c) == duration(50)

 cases c:

 <OPEN> -> i.SetValve(true),

 <CLOSE> -> i.SetValve(false)

 end

 post i.ReadValve() <=> c = <OPEN> and

 not i.ReadValve() <=> c = <CLOSE>

end ValveActuator

20

Example: modelling faults

class ValveActuator

types

ValveCommand = <OPEN> | <CLOSE>;

instance variables

 private i : Interface;

 private stuck : bool := false

operations

 private SetStuckState: bool ==> ()

 SetStuckState(b) == stuck := b

 post stuck <=> b and not stuck <=> not b;

public Command: ValveCommand ==> ()

 Command(c) == duration(50)

 if not stuck then

 cases c:

 <OPEN> -> i.SetValve(true),

 <CLOSE> -> i.SetValve(false)

 end

 pre not stuck

 post i.ReadValve() <=> c = <OPEN> and

 not i.ReadValve() <=> c = <CLOSE>

 errs STUCK : stuck ->

 i.ReadValve() = ~i.ReadValve();

end ValveActuator

A stuck valve …

21

Example: modelling faults

A leak in which liquid flows from the

tank at a constant rate.

Modelling DE-side entails DE

accessing flow rate. So this may be

more appropriately modelled CT-side.

CT-side also allows for more

sophisticated fault models, e.g. leak

flow rate depends on pressure.

22

Example: water tank

23

DESTECS case studies

24

Chess – Self Balancing Scooter (1)

25

Chess – Self Balancing Scooter (2)

• ChessWay is a technology and methodology demonstrator

• First generation: single controller driving both wheels

• Second generation: two controllers, one driving a wheel each

• Third generation: wireless communication sensors ↔ controllers

• ChessWay exhibits typically modelling challenges

common to many Chess products under development

• Simple nominal behavior, relatively easy to engineer

• System behavior becomes very complex when faults and
fault tolerance comes into play

• Managing this complexity is the key to improve productivity
(pre-empt cost for complex system integration and validation)

• Typical design questions we want to address a-priori:

• Can we demonstrate the robustness of the ChessWay design?

• Can we assess the impact of changes on the current design?

26

Chess – Self Balancing Scooter (3)

27

Chess – Self Balancing Scooter (4)

wireless

communication

28

http://www.engadget.com/2011/10/17/wireless-bike-brake-system-has-the-highest-gpa-ever/

No Wires? Have You Lost Your Mind?

break reliability

(response within 250 msec)

99.999999999997%

(formally proven)

would you trust this device?

29

Modeling the SBS (1)

user

behavior
controller interface plant

discrete event contract continuous time

30

Modeling the SBS – continuous time (2)

31

Modeling the SBS – continuous time (3)

32

Modeling the SBS – discrete time (4)

32

class ChessWay top-lev el ov erv iew

BUS

FPGA2

FPGA1

VDM Generated model::

ChessWay

+ debug: bool {bag}

+ ChessWay() : ChessWay

VDM Generated model::LeftController

+ CtrlLoop()

+ LeftController() : LeftController

+ PowerUp()

+ printDiagnostics()

+ setRightController(RightController)

VDM Generated model::

RightController

+ CtrlLoop()

+ PowerUp()

+ printDiagnostics()

+ RightController() : RightController

+ setLeftController(LeftController)

VDM Generated model::Controller

+ mLoopCnt: int = 0 {bag}

+ mName: char [0..*] {sequence}

+ Controller(char) : Controller

+ CtrlLoop()

+ getValue(char) : unlimitedNatural

+ PowerUp()

+ printDiagnostics()

+ setEnvironment(Environment)

+ setValue(char, unlimitedNatural)

VDM Generated model::Accelerometer

+ Accelerometer(Controller) : Accelerometer

+ getAccelerationData() : NotSupportedType

VDM Generated model::DirectionSwitch

+ DirectionSwitch(Controller) : DirectionSwitch

+ getStatus() : tDirectionStatus

VDM Generated model::Gyroscope

+ getYawRateData() : unlimitedNatural

+ Gyroscope(Controller) : Gyroscope

VDM Generated model::OnOffSwitch

+ getStatus() : bool

+ OnOffSwitch(Controller) : OnOffSwitch

+lctrl 1..1 -mLeft 0..1

+rctrl 1..1 -mRight 0..1

+mAccelerometer 1..1

+mDirectionSwitch 1..1

+mGyroscope 1..1

+mOnOffSwitch 1..1

33

Modeling the SBS – discrete time (5)

33

class ChessWay system classes

Controller

+ mLoopCnt: int = 0 {bag}

+ mName: char [0..*] {sequence}

+ Controller(char) : Controller

+ CtrlLoop()

+ getValue(char) : unlimitedNatural

+ PowerUp()

+ printDiagnostics()

+ setEnvironment(Environment)

+ setValue(char, unlimitedNatural)

LeftController

+ CtrlLoop()

+ LeftController() : LeftController

+ PowerUp()

+ printDiagnostics()

+ setRightController(RightController)

RightController

+ CtrlLoop()

+ PowerUp()

+ printDiagnostics()

+ RightController() : RightController

+ setLeftController(LeftController)

SafetySwitch

+ getStatus() : bool

+ SafetySwitch(Controller) : SafetySwitch

DirectionSwitch

+ DirectionSwitch(Controller) : DirectionSwitch

+ getStatus() : tDirectionStatus

Accelerometer

+ Accelerometer(Controller) : Accelerometer

+ getAccelerationData() : NotSupportedType

Gyroscope

+ getYawRateData() : unlimitedNatural

+ Gyroscope(Controller) : Gyroscope

Env ironment

+ debug: bool {bag}

- mMaxSimTime: int {bag}

- reserved: char [0..*] {readOnly,bag}

+ Environment(World, int) : Environment

+ evalSensors(unlimitedNatural)

+ evalSingle(unlimitedNatural, char)

+ getValue(char) : unlimitedNatural

+ loadScenario(char)

- mainLoop()

- printDiagnostics()

+ printEnvironment()

+ setValue(char, unlimitedNatural)

- terminate()

MotorSensor

+ getHallSensorData() : NotSupportedType

+ MotorSensor(Controller) : MotorSensor

MotorActuator

+ initActuator()

+ isActuated() : bool

+ MotorActuator(Controller) : MotorActuator

+ printDiagnostics()

+ setActuated()

+ setFreeRunning()

+ setPWM(unlimitedNatural)

-mController

1..1

-mController 1..1

+mSafetySwitch 1..1

+mGyroscope 1..1

-mRight

0..1

#mEnvironment 0..1
+mMotorActuator

1..1

-mController 1..1

+mDirectionSwitch 1..1

-mController

1..1

-mController

1..1

+mMotorSensor 1..1

-mLeft

0..1

+mAccelerometer 1..1

-mController

1..1

34

Analysis of SBS co-models (1)

Self balancing scooter

-1

-0.5

0

0.5

1
Velocity Person+frame x-axis (m/s)

0 5 10 15 20
time {s}

-100

-50

0

50

100
Sensor output

35

Analysis of SBS co-models (2)

CT model running in 20-sim and DE model running in Overture using DESTECS cosim tool

Movie available on http://www.destecs.org and http://www.youtube.com/watch?v=HccXkd4gWys

http://www.destecs.org/
http://www.youtube.com/watch?v=HccXkd4gWys

36

Verhaert – Dredging Excavator

• Overload and end-stop protection

• Emergency switch and system reset behavior

• Advanced operator assistance (i.e. perform a straight dig)

37

Observations and conclusions

• Formal Methods helps to de-risk development

• including de-risking detailed formal analysis

• providing rapid, accurate, but maybe incomplete analyses

• training and methodological guidelines are crucial

• start formal, (higher chance to) remain formal

• What does formalism buy us?

• Sound semantic basis for the co-simulation tools & methods

• Comprehensive analytic solutions are a long way off…

… so (trustworthy) executable specifications are legit!

• Co-modelling exposes issues that are often implicit

• In individual disciplines (we knew that already!)

• And across boundaries, e.g. where to model faults

• Expose potential problems earlier (no-brainer)

• Co-simulation is enabler for Design Space Exploration

• Collaboration (also between researchers and practitioners )

38

thank you for your attention!

Any questions?

Some pointers to related information resources

http://www.destecs.org http://www.20sim.com

http://www.overturetool.org http://www.vdmportal.org

