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Overview of this talk 

• Challenges in developing dependable embedded systems 

 

• Collaborative modeling: the DESTECS approach 

 

• Example industrial applications 

 

• Live tool demo 

 

• Conclusions 
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Embedded Systems Development (1) 

• Highly competitive marketplace: 

• Requirements are volatile 

• Time to market is key 

 

• Products are complex 

 

• Early design stages are vulnerable to failure: 

• Engineering disciplines have distinct methods & tools 

• Design choices are often implicit or experience based 

• System dynamics are complex to grasp and express 

• Dependability (faults, fault tolerance) is often crucial 
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• Problem decomposition into 
disciplines 

• Traditional approaches are 
“one discipline at a time” 

• Concurrent engineering required 
to improve time to market 

• … but important properties are 
multidisciplinary 

• … and so weaknesses are exposed 
late (integration) 

• So: how to cross the boundaries 
between disciplines? 

Embedded Systems Development (2) 
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Embedded Systems Development (3) 

• Design gaps between disciplines 

lead to errors in designs 
 

• Many of these errors are 

detected too late: during testing 

of first physical prototype 
 

• Example: paper path setup 

 

• Paper jams for high speed paper 

handling 
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Embedded Systems Development (4) 
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Industial “holy grail” : Design Space Exploration 

Explore and restrict to feasible solutions 
 

Managing space of models (patterns) 
 

Visualisation of test outcomes 
 

“Ranking” 
 

Managing scenarios 
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• Restriction to discrete-event domain and continuous-time domain 

• Industrial Follow Group will monitor results and provide challenges 

• EU FP7 project runs from 01-2010 until 12-2012 

• Bridge design gap between disciplines through co-simulation  

• Develop methods and tools 

• Modeling of faults and fault tolerance mechanisms 

DESTECS (www.destecs.org) 

  

VDM 

(Overture) 

Bond graphs 

(20-sim) 
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DESTECS in a nutshell (1) 

Model Based Design: 

• controller in discrete 
event domain 

 

• plant in continuous 
time domain 

 
 

 

Co-simulation: 

• coupling disciplines 
 

• analysis on virtual 
prototype 
 

Automated Co-model Analysis 
 
Methodological guidelines 
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DESTECS in a nutshell (2) 

Cause of the problems 

• Geometry changes were not 
adequately communicated 

• Errors in acceleration and 
deceleration paths 

Results 

• These errors can be detected in an 
early stage of the design through 
co-simulation 

• Dependability can be assessed by 
fault injection 

 
Marcel Verhoef, Peter Visser, Jozef Hooman, Jan Broenink. Co-simulation of Real-time 
Embedded Control Systems, LNCS 4591, Integrated Formal Methods IFM 2007, pp. 
639-658, 2007 
 

Zoe Andrews, John Fitzgerald, Marcel Verhoef. Resilience Modelling Through Discrete 
Event and Continuous Time Co-Simulation, Dependable Systems and Networks (July 
2007). 
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Modelling & Simulation 

Script 

Model Interface 

Model 

Runs a simulation  
Initialises variables and 
design parameters 
Forces selections and 
external updates, e.g. set 
point 

Abstract 
Competent if detailed enough for analysis 
Variables 
Design Parameters fixed per run 

Faults – errors – failures 
Fault Modelling: including 
error states & faulty 
functionality in the model 
Fault Injection during a 
simulation managed by script 
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co-modelling & co-simulation 

Script 

Co-model Interface 

Co-model 

DE 

Model 
Contract 

CT 

Model 

Shared  
• design parameters 
• variables 
• events 
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DESTECS Tool Architecture 

Continuous-time 

system 

Co-Simulation 

engine 

Discrete-event 

system 

Overture DESTECS Tool 20-sim 

Formally specified semantics of the DE / CT integration (SOS) 
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Co-Simulation architecture 
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Example: water tank 
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Example: water tank 

class Controller 

 

instance variables 

 private i : Interface 

 

operations 

 async public Open:() ==> () 

 Open() == duration(50) 

   i.SetValve(true); 

 

 async public Close:() ==> () 

 Close() == cycles(1000) 

   i.SetValve(false); 

 

sync 

 mutex(Open, Close); 

 mutex(Open); mutex(Close) 

 

end Controller  
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Example: water tank 

class Controller 

 

instance variables 

 private i : Interface 

 

operations 

 async public Open:() ==> () 

 Open() == duration(50) 

   i.SetValve(true); 

 

 async public Close:() ==> () 

 Close() == cycles(1000) 

   i.SetValve(false); 

 

sync 

 mutex(Open, Close); 

 mutex(Open); mutex(Close) 

 

end Controller  

-- Shared design parameters 

sdp real maxlevel; 

sdp real minlevel;  

 

-- Monitored variables (seen from the DE controller) 

monitored real level := 0.0; 

 

-- Controlled variables (seen from the DE controller) 

controlled bool valve := false;  

 

-- events 

event high; 

event low; 

-- link events to operations 

event high = System.Controller.Open; 

event low = System.Controller.Close; 
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Example: water tank 

class Controller 

 

instance variables 

 private i : Interface 

 

operations 

 async public Open:() ==> () 

 Open() == duration(50) 

   i.SetValve(true); 

 

 async public Close:() ==> () 

 Close() == cycles(1000) 

   i.SetValve(false); 

 

sync 

 mutex(Open, Close); 

 mutex(Open); mutex(Close) 

 

end Controller  

This is VDM-RT: real-
time extensions 

Interface manages the 
shared variable for the 
valve setting.  

duration constrain 
(absolute) time taken by 
the  asynchronous ops.  

cycles constrain (relative) 
time taken by the ops, 
depending on deployment 

Single active thread 
accessing the valve 
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Example: modelling faults 

class ValveActuator 

types 

ValveCommand = <OPEN> | <CLOSE>; 

instance variables 

 private i : Interface; 

 

 

operations 

 

  

  

public Command: ValveCommand ==> () 

 Command(c) == duration(50) 

 

   cases c: 

    <OPEN> -> i.SetValve(true), 

    <CLOSE> -> i.SetValve(false) 

   end 

 

 post i.ReadValve() <=> c = <OPEN> and 

      not i.ReadValve() <=> c = <CLOSE> 

 

 

 

end ValveActuator 
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Example: modelling faults 

class ValveActuator 

types 

ValveCommand = <OPEN> | <CLOSE>; 

instance variables 

 private i : Interface; 

 private stuck : bool := false 

 

operations 

 

 private SetStuckState: bool ==> () 

 SetStuckState(b) == stuck := b 

 post stuck <=> b and not stuck <=> not b; 

 

  

public Command: ValveCommand ==> () 

 Command(c) == duration(50) 

   if not stuck then 

   cases c: 

    <OPEN> -> i.SetValve(true), 

    <CLOSE> -> i.SetValve(false) 

   end 

 pre not stuck 

 post i.ReadValve() <=> c = <OPEN> and 

      not i.ReadValve() <=> c = <CLOSE> 

 errs STUCK : stuck ->  

              i.ReadValve() = ~i.ReadValve(); 

 

end ValveActuator 

 

A stuck valve …  
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Example: modelling faults 

A leak in which liquid flows from the 

tank at a constant rate.  

Modelling DE-side entails DE 

accessing flow rate. So this may be 

more appropriately modelled CT-side.  

CT-side also allows for more 

sophisticated fault models, e.g. leak 

flow rate depends on pressure.  
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Example: water tank 
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DESTECS case studies 
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Chess – Self Balancing Scooter (1) 
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Chess – Self Balancing Scooter (2) 

• ChessWay is a technology and methodology demonstrator 

• First generation: single controller driving both wheels 

• Second generation: two controllers, one driving a wheel each 

• Third generation: wireless communication sensors ↔ controllers 

 

• ChessWay exhibits typically modelling challenges 

common to many Chess products under development 

• Simple nominal behavior, relatively easy to engineer 

• System behavior becomes very complex when faults and  
fault tolerance comes into play 

• Managing this complexity is the key to improve productivity 
(pre-empt cost for complex system integration and validation) 
 

• Typical design questions we want to address a-priori: 

• Can we demonstrate the robustness of the ChessWay design? 

• Can we assess the impact of changes on the current design? 
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Chess – Self Balancing Scooter (3) 
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Chess – Self Balancing Scooter (4) 

 

wireless 

communication 
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http://www.engadget.com/2011/10/17/wireless-bike-brake-system-has-the-highest-gpa-ever/ 

No Wires? Have You Lost Your Mind? 

break reliability  

(response within 250 msec) 

99.999999999997% 

(formally proven) 

would you trust this device? 
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Modeling the SBS  (1) 

user 

behavior 
controller interface plant 

discrete event contract continuous time 
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Modeling the SBS – continuous time  (2) 
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Modeling the SBS – continuous time  (3) 
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Modeling the SBS – discrete time  (4) 
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class ChessWay top-lev el ov erv iew

BUS

FPGA2

FPGA1

VDM Generated model::

ChessWay

+ debug:  bool {bag}

+ ChessWay() : ChessWay

VDM Generated model::LeftController

+ CtrlLoop()

+ LeftController() : LeftController

+ PowerUp()

+ printDiagnostics()

+ setRightController(RightController)

VDM Generated model::

RightController

+ CtrlLoop()

+ PowerUp()

+ printDiagnostics()

+ RightController() : RightController

+ setLeftController(LeftController)

VDM Generated model::Controller

+ mLoopCnt:  int = 0 {bag}

+ mName:  char [0..*] {sequence}

+ Controller(char) : Controller

+ CtrlLoop()

+ getValue(char) : unlimitedNatural

+ PowerUp()

+ printDiagnostics()

+ setEnvironment(Environment)

+ setValue(char, unlimitedNatural)

VDM Generated model::Accelerometer

+ Accelerometer(Controller) : Accelerometer

+ getAccelerationData() : NotSupportedType

VDM Generated model::DirectionSwitch

+ DirectionSwitch(Controller) : DirectionSwitch

+ getStatus() : tDirectionStatus

VDM Generated model::Gyroscope

+ getYawRateData() : unlimitedNatural

+ Gyroscope(Controller) : Gyroscope

VDM Generated model::OnOffSwitch

+ getStatus() : bool

+ OnOffSwitch(Controller) : OnOffSwitch

+lctrl 1..1 -mLeft 0..1

+rctrl 1..1 -mRight 0..1

+mAccelerometer 1..1

+mDirectionSwitch 1..1

+mGyroscope 1..1

+mOnOffSwitch 1..1
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Modeling the SBS – discrete time  (5) 
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class ChessWay system classes

Controller

+ mLoopCnt:  int = 0 {bag}

+ mName:  char [0..*] {sequence}

+ Controller(char) : Controller

+ CtrlLoop()

+ getValue(char) : unlimitedNatural

+ PowerUp()

+ printDiagnostics()

+ setEnvironment(Environment)

+ setValue(char, unlimitedNatural)

LeftController

+ CtrlLoop()

+ LeftController() : LeftController

+ PowerUp()

+ printDiagnostics()

+ setRightController(RightController)

RightController

+ CtrlLoop()

+ PowerUp()

+ printDiagnostics()

+ RightController() : RightController

+ setLeftController(LeftController)

SafetySwitch

+ getStatus() : bool

+ SafetySwitch(Controller) : SafetySwitch

DirectionSwitch

+ DirectionSwitch(Controller) : DirectionSwitch

+ getStatus() : tDirectionStatus

Accelerometer

+ Accelerometer(Controller) : Accelerometer

+ getAccelerationData() : NotSupportedType

Gyroscope

+ getYawRateData() : unlimitedNatural

+ Gyroscope(Controller) : Gyroscope

Env ironment

+ debug:  bool {bag}

- mMaxSimTime:  int {bag}

- reserved:  char [0..*] {readOnly,bag}

+ Environment(World, int) : Environment

+ evalSensors(unlimitedNatural)

+ evalSingle(unlimitedNatural, char)

+ getValue(char) : unlimitedNatural

+ loadScenario(char)

- mainLoop()

- printDiagnostics()

+ printEnvironment()

+ setValue(char, unlimitedNatural)

- terminate()

MotorSensor

+ getHallSensorData() : NotSupportedType

+ MotorSensor(Controller) : MotorSensor

MotorActuator

+ initActuator()

+ isActuated() : bool

+ MotorActuator(Controller) : MotorActuator

+ printDiagnostics()

+ setActuated()

+ setFreeRunning()

+ setPWM(unlimitedNatural)

-mController

1..1

-mController 1..1

+mSafetySwitch 1..1

+mGyroscope 1..1

-mRight

0..1

#mEnvironment 0..1
+mMotorActuator

1..1

-mController 1..1

+mDirectionSwitch 1..1

-mController

1..1

-mController

1..1

+mMotorSensor 1..1

-mLeft

0..1

+mAccelerometer 1..1

-mController

1..1
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Analysis of SBS co-models (1) 

Self balancing scooter
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Analysis of SBS co-models (2) 

CT model running in 20-sim and DE model running in Overture using DESTECS cosim tool 

Movie available on http://www.destecs.org and http://www.youtube.com/watch?v=HccXkd4gWys 

http://www.destecs.org/
http://www.youtube.com/watch?v=HccXkd4gWys
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Verhaert – Dredging Excavator 

• Overload and end-stop protection 

• Emergency switch and system reset behavior 

• Advanced operator assistance (i.e. perform a straight dig) 
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Observations and conclusions 

• Formal Methods helps to de-risk development  

• including de-risking detailed formal analysis 

• providing rapid, accurate, but maybe incomplete analyses 

• training and methodological guidelines are crucial 

• start formal, (higher chance to) remain formal 
 

• What does formalism buy us?  

• Sound semantic basis for the co-simulation tools & methods 

• Comprehensive analytic solutions are a long way off…  

… so (trustworthy) executable specifications are legit!  
 

• Co-modelling exposes issues that are often implicit 

• In individual disciplines (we knew that already!)  

• And across boundaries, e.g. where to model faults 

• Expose potential problems earlier (no-brainer) 
 

• Co-simulation is enabler for Design Space Exploration 

• Collaboration (also between researchers and practitioners ) 
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thank you for your attention! 

 

Any questions? 

Some pointers to related information resources 
 

http://www.destecs.org  http://www.20sim.com 

http://www.overturetool.org http://www.vdmportal.org 


