
Garakabu2: A Formal Verification Tool for ZIPC

Weiqiang Kong, Kyushu University, Japan

[Jointly developed by]
Fukuoka IST & CATS Co. Ltd. & Kyushu University of Japan

[With technical supports from]
AIST of Japan

Industry Day Program of FM2012
August 30, 2012

Outline

 Garakabu2 and ZIPC – A general introduction

 The SMT-based BMC approach in Garakabu2

 Towards practical usability for on-site software engineers

Outline

 Garakabu2 and ZIPC – A general introduction

The SMT-based BMC approach in Garakabu2

Towards practical usability for on-site software engineers

Garakabu2 in General

ZIPC Garakabu2

input

output
counterexample

① Software designs in ZIPC-HSTM
② Properties in LTL

③ Checking the properties against
the design with BMC

④ Tracking and understanding error reasons

⑤ Revising the design and recheck…

Features of Garakabu2

 Designs developed with ZIPC can be checked as they are
 Easy to use: no need to learn a 2nd MC specific description language

 Traces of CX can be illustrated in ZIPC
 Easy to understand: relatively easier to understand the reasons for errors

 Previous MC results can be saved and replayed
 Easy to make a later confirmation for previous designs/checks (traceability)

 LTL properties can be specified more intuitively

 Write/Draw LTL properties by patterns or figures (with SpecEditor of AIST)

Our intention:

Make Garakabu2 an easy-to-use formal verification tool for on-site
software engineers who have not much knowledge in formal methods.

ZIPC in General

Design/Behavior
(in HSTM)

Source Codes
(Code Framework)

Automatic Generation

A CASE Tool (or … model-based development tool)

 No overlooking of possibly abnormal cases;

 Automatically generating source codes (framework);

 Syntax check, graphical simulation;

 …

No formal verification supports

JASA Questionnaire 2009

JASA Questionnaire 2010

Hierarchical State Transition Matrix (HSTM)

 STM is a table that captures an object’s behaviors under event-state match;

 An HSTM is a set of STMs organized in a hierarchical structure with calling-to and
returning-from the execution of Child STMs;

 An HSTM design is a set of HSTMs executing in an interleaving manner.

statement 1;
…
statement i;

intVar = □0.1;
statement j;
…
statement n;

statement 1;
…
statement m;
return intValue;

A Simplified Money-Exchange Machine (MEM) in HSTM

HSTM1: Specifies interaction with users and actual bill exchange functionality;

HSTM2: Specifies exchanged bill payback functionality.

HSTM1

HSTM2

ZIPC – Image Demo (Japanese)

Outline

Garakabu2 and ZIPC – A general introduction

The SMT-based BMC approach in Garakabu2

Towards practical usability for on-site software engineers

SMT solving and SMT solvers

 SMT (Satisfiability Modulo Theories) Solving Technique

A technique of deciding satisfiability of a given quantifier-free formula,
i.e., finding a variable-assignment that makes the formula TRUE.

 SMT Solvers

CVC3 (New York Univ.), Yices (SRI International), Z3 (Microsoft), etc.

formula CVC3Encode Input/Solve

counterexample

distill

Formula step3 （all states from step2)

Formula step2 （all states from step1)

Basic ideas for the encoding in Garakabu2

…… ………… …………

s0

状
態

状
態

s1

状
態

状
態

s2

状
態

状
態

s3

状
態

状
態

s4

状
態

状
態

s5

状
態

状
態

s6 s7 s8 s9

Can formula:
step0 and…and stepn and NOT(prop)
be satisfied/true?

LTL Properties

CVC3
Satisfiable: Counterexample;

Unsatisfiable: holds within bound

HSTM
Formula step0 （initial states）

Formula step1 （all states from step0)

Formula prop

Basic Ideas (Informal) for Encoding an HSTM Design

CELL := (cell.event ∧ cell.status) => (cell.action ∧ cell.statusTransit ∧ untouchedVars)

STM := (CELL1 ∧ flagC1) ∨ (CELL2 ∧ flagC2) ∨ … ∨ (CELLN ∧ flagCN)

HSTM := (STM1 ∧ flagS1) ∨ (STM2 ∧ flagS2) ∨ … ∨ (STMP ∧ flagSN)

DESIGN := (HSTM1 ∨ HSTM2 ∨ … ∨ HSTMQ) ∧ asynchConstraints

Basic Encoding Rules

※ Formula asynchConstraints is defined on flag variables to restrict the
interleaving execution manner.

※ There are many subtle, but not technically difficult, details for encoding.

Basic Ideas (Informal) for Encoding an HSTM Design

CELLK := (cell.eventK-1 ∧ cell.statusK-1) => (cell.actionK ∧ cell.statusTransitK ∧ untouchedVarsK)

STMK := (CELL1K ∧ flagC1K) ∨ (CELL2K ∧ flagC2K) ∨ … ∨ (CELLNK ∧ flagCNK)

HSTMK := (STM1K ∧ flagS1k) ∨ (STM2K ∧ flagS2k) ∨ … ∨ (STMPK ∧ flagSNk)

DESIGNK := (HSTM1K ∨ HSTM2K ∨ … ∨ HSTMQK) ∧ asynchConstraintsK

Step k Formula (representing the set of states reachable at step k)

InitState := (var10 = initValueVar1) ∧ (var20 = initValueVar2) ∧ … ∧ (varMk = initValueVarM)

Step 0 Formula (representing Initial States)

※ Formulas cell.actionk and untouchedVarsk are defined using variables that
belong to either step k or step k-1.

※ Hierarchical structure is represented by flag variables and changes of their values.

Basic ideas for accelerating BMC in Garakabu2

Formula step3 （all states from step2)

Formula step2 （all states from step1)

…… ………… …………

s0

状
態

状
態

s1

状
態

状
態

s2

状
態

状
態

s3

状
態

状
態

s4

状
態

状
態

s5

状
態

状
態

s6 s7 s8 s9

HSTM
Formula step0 （initial states）

Formula step1 （all states from step0)

 Avoid encoding all transitions in stepk by explicitly pre-traversing the state space.

 Stateless traversing; only interested in transitions executable in stepk.

 Saturation may happen for deep BMC bounds.

 Generally becomes faster, especially for safety properties.

Outline

Garakabu2 and ZIPC – A general introduction

The SMT-based BMC approach in Garakabu2

Towards practical usability for on-site software engineers

(with demo of Garakabu2)

Step 1: Input ZIPC-HSTM designs into Garakabu2

 Syntax errors or specifications that could not be handled by Garakabu2
will be reported and pinpointed.

Garakabu2 – Image Demo

Step 2: Select STMs to be checked

 It is possible to select and check partial designs that are of interesting

 Partial selection that violates predefined rules are not allowed
 E.g., it is not allowed to select a child STM, whose parent STM is not

selected but STMs of other tasks are selected.

Garakabu2 – Image Demo

Step 3: Set initial/threshold values for variables

 Garakabu2 automatically reads initial values defined in ZIPC RAM file;

 It is possible to set the min/max values of variables (optional)

Variable Types
Range Values

Min Max

Bool False True

Byte -128 127

Char -128 127

Short -32768 32767

Int -2147483648 2147483647

Garakabu2 – Image Demo

Step 4: Input properties to be checked

 Supported properties
 Reachability of Invalid Cells;

 General LTL properties;

 Deadlock;

 Range values violation;

 HSTM-specific properties:

 Correlation between status of different STMs

Garakabu2 – Image Demo

Specify LTL properties by patterns

 It is difficult to specify LTL properties correctly
 Property in text:

Before the bill exchanged for a previous session is taken, no new

to-be-exchanged bills could be inserted into the machine.

 Property in LTL:

[G](((sigBillExchanged == true) && !(exchangeTaken == true) &&

[F](exchangeTaken == true)) =>

((sigExchangeOK == false) [U] (exchangeTaken == true)))

 SpecEditor – under-development in AIST of Japan
 Specify LTL properties with Dwyer’s LTL patterns

 Specify LTL properties with graph drawing (AIST LTL Notations)

SpecEditor – Image Demo

Step 5: Read/Track the check results

 After checking, the results in
 Black indicates no counterexamples (within the bound)

 Red indicates a counterexample

 By clicking a check result in red
 Trace of the counterexample could be illustrated in ZIPC environment,

 By which to confirm the undesired behaviors that violate the property

Garakabu2 – Image Demo

Step 6: Read/Replay previous check results

 Previous check results are recorded for further confirmation.
 Select the history management label,

 Double-click a checking item to confirm the model, property, and results to
help understand design revision history.

Garakabu2 – Image Demo

This is all Garakabu2 about.

Simple and Easy-to-use

are what we expect!

Future work

 Accelerating BMC implemented in Garakabu2;
 Further integrating explicit model checking techniques into BMC

 Preprocessing with explicit traversing and applying explicit abstraction
techniques, e.g., partial order reductions etc.

 Extending HSTM components checkable by Garakabu2;
 E.g., Concurrent states are not checkable by current Garakabu2

 According to comments from practical users of ZIPC and Garakabu2

 (Further) Implementing SpecEditor;

 ……

Questions and Comments?

