The Future of Formal Software Verification in Avionics

Yannick Moy
Formal Methods 2012 Industry Day

HI-LITE Background

HI-LITE DO-178C: formal methods can replace testing

Formal methods [...] might be the primary source of evidence for the satisfaction of many of the objectives concerned with development and verification.

2011: Formal Methods Supplement (DO-333)

HI-LITE Programming Contracts

Hi-Lite: executable annotation language???

HI-LITE Project

HI-LITE Ada 2012

```
function One_Of (V, X, Y : in Int) return Boolean
   is (V = X \text{ or else } V = Y);
3
   function Max (X, Y : in Int) return Int with
5
      Pre
     Post => Max'Result >= X and then
6
               Max'Result >= Y and then
8
               One_Of (Max'Result, X, Y);
9
   function Max (X : in Int_Array) return Int with
10
     Post => ((for all ) in X'Range =>
11
                 \operatorname{Max}'\operatorname{Result} >= X(J) and then
12
                for some J in X'Range =>
13
                  Max'Result = X(J);
14
```

Example of contract

Example:

- A list of event detection statuses
- Request to reset the detection status for Event

```
procedure Reset_Event_Status (Event : in T_Event) with

Post => Post-condition

not Event_Status(Event).Detection and The detection of event is reset

(for all Other_Event in T_Event => For all other events

( if Other_Event /= Event then

Event_Status(Other_Event) = Event_Status'Old(Other_Event)));

The detection status is unchanged
```

Event	Event3
Not detected	Detected

HI-LITE GNAT compiler support for Ada 2012

- Run-time checking of new assertions
- New aspect to formally specify test cases
- New switch to choose semantics of integers in assertions, e.g. unbounded integers or largest machine integers
- New library of containers adapted to formal verification (lists, sets, maps, vectors)
- New run-time checks for integrating tests and proofs

HI-LITE Proof + Test

HI-LITE Testing vs. Formal Verification

local exhaustivity argument:
each function covered
→ enough behaviors
explored

| Positive provided all functions proved all assumptions justified explored

HI-LITE Combining tests and proofs

How so we justify assumptions made during proof?

verification combining tests and proofs should be AT LEAST AS GOOD AS verification based on tests only

HI-LITE Combination 1: tested calls proved

during testing:

check that
precondition of Q
is respected

assumption for proof:
precondition of Q
is respected

HI-LITE Combination 2: proved calls tested

during testing:

check that
postcondition of P
is respected

assumption for proof:
postcondition of P
is respected

HI-LITE Caution: contracts are not only pre/post!

Testing must check additional properties Done by compiler instrumentation

HI-LITE Testing + Formal Verification

local exhaustivity argument:

- test: function covered
- proof: by nature of proof

global soundness argument:

- proof: assumptions proved
- test: assumptions tested

HI-LITE GNAT toolsuite

HI-LITE GNATmerge result

HI-LITE Conclusion

HI-LITE Airbus 5 "must-have" of formal methods

Soundness

Applicability to the code

Usability by normal engineers on normal computers

Improve on classical methods

Certifiability

current work

HI-LITE Project Partners

www.open-do.org/projects/hi-lite